4 research outputs found

    Learning Language-Conditioned Deformable Object Manipulation with Graph Dynamics

    Full text link
    Multi-task learning of deformable object manipulation is a challenging problem in robot manipulation. Most previous works address this problem in a goal-conditioned way and adapt goal images to specify different tasks, which limits the multi-task learning performance and can not generalize to new tasks. Thus, we adapt language instruction to specify deformable object manipulation tasks and propose a learning framework. We first design a unified Transformer-based architecture to understand multi-modal data and output picking and placing action. Besides, we have introduced the visible connectivity graph to tackle nonlinear dynamics and complex configuration of the deformable object. Both simulated and real experiments have demonstrated that the proposed method is effective and can generalize to unseen instructions and tasks. Compared with the state-of-the-art method, our method achieves higher success rates (87.2% on average) and has a 75.6% shorter inference time. We also demonstrate that our method performs well in real-world experiments.Comment: submitted to ICRA 202

    Transparent Shape from a Single View Polarization Image

    Full text link
    This paper presents a learning-based method for transparent surface estimation from a single view polarization image. Existing shape from polarization(SfP) methods have the difficulty in estimating transparent shape since the inherent transmission interference heavily reduces the reliability of physics-based prior. To address this challenge, we propose the concept of physics-based prior, which is inspired by the characteristic that the transmission component in the polarization image has more noise than reflection. The confidence is used to determine the contribution of the interfered physics-based prior. Then, we build a network(TransSfP) with multi-branch architecture to avoid the destruction of relationships between different hierarchical inputs. To train and test our method, we construct a dataset for transparent shape from polarization with paired polarization images and ground-truth normal maps. Extensive experiments and comparisons demonstrate the superior accuracy of our method. Our codes and data are provided in the supplements
    corecore